At the root of all XACML policies is a Policy or a PolicySet. A Policy represents a single access control policy, expressed through a set of rules. A PolicySet is a container that can hold other Policies or PolicySets, as well as references to policies found in remote locations. Each XACML policy document contains exactly one Policy or PolicySet root XML tag. Because a Policy or PolicySet may contain multiple policies or Rules, each of which may evaluate to different access control decisions, XACML needs some way of reconciling the decisions each makes. This is done through a collection of Combining Algorithms. Each algorithm represents a different way of combining multiple decisions into a single decision.
WSO2 Identity Server XACML support will provide two methods of writing an XACML Policy.
...
You can define a policy obligation or advice as follows:
Image RemovedImage Added
Step 11: We have defined the target, rules, and obligation. Now it is time to define the rule-combining algorithm. Let select is as “first applicable” Then rule effect of the 1st rule that is evaluated properly, would be the final result of the policy.
...
Excerpt |
---|
Note |
---|
| There are Policy Combining Algorithms which are used by Policy Sets and Rule Combining Algorithms which are used by Policies. Each of the algorithms mentioned below has its Policy Combining algorithm and its Rule Combining algorithms as follows: - Standard combining algorithms defined in XACML 3.0:
- urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-overrides
- urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-overrides
- urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:permit-overrides
- urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-overrides
- urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first-applicable
- urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first-applicable
- urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one-applicable
- urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:ordered-deny-overrides
- urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:ordered-deny-overrides
- urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:ordered-permit-overrides
- urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:ordered-permit-overrides
- urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-unless-permit
- urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:permit-unless-deny
- urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-permit
- urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-unless-deny
These algorithms are explained in detail as follows, - Deny Overrides:
This combining algorithm combines decisions in such a way that if any decision is a Deny, then that decision wins. Deny overrides is one of the safest combining algorithms since it favors a Deny decision. However, if none of the children return a Deny decision, then the combining algorithm will never produce a Deny.
- Permit Overrides:
This combining algorithm combines decisions in such a way that if any decision is a Permit, then that decision wins. The permit overrides combining algorithm can be interesting when:
At least one child must return a Permit for access to be granted overall regardless of restrictions. One wants to return all the reasons why access is being denied. This is what one could call a “greedy deny overrides”.Forinstanceifthe reason for not being able to view a resource is that(a) you are not the owner and (b) you are in the wrong department, then we could rework the previous example as follows. When any of the deny reason triggers, the response would be denied with all the applicable reasons for access being denied: - Policy Set (deny overrides): role==manager AND action==view AND resourceType==resource
- Policy 1 (permit overrides)
- Rule 1: deny if resourceOwner != userId + Advice(“you are not the owner of the resource”)
- Rule 2: deny if rsourceDepartment != userDepartment+ Advice(“you are not in the same department as the resource)
- Policy 2
- First Applicable:
This combining algorithm combines decisions in such a way that the final decision returned is the first one produced either of Permit or Deny.
First applicable is useful to shortcut policy evaluation. For instance, if a policy set contains a long series of not applicable policies and one applicable policy which returns either of Permit or Deny, then if that policy comes first and does produce Permit or Deny, the PDP will stop there and not process the other siblings.
- Deny Unless Permit | Permit Unless Deny:
In XACML there are 4 possible decisions: Permit, Deny, NotApplicable, and Indeterminate. Sometimes, it is desirable to hide the NotApplicable and Indeterminate decisions to only allow for Permit or Deny. It makes the PEP logic potentially simpler.
This combining algorithm exists only for policy sets to combine policy sets and policies. It cannot be used to combine rules. With this combining algorithm, in order for either of a Permit or Deny to be returned, then only one of the children must produce a valid decision – whether Deny or Permit. - Ordered Deny Overrides | Ordered Permit Overrides:
The ordered combining algorithms combine decisions in the same way as their (unordered) cousins. In, addition they bring the guarantee that policies, policy sets, and rules are considered in the order in which they are defined. The need to define an ordered combining algorithm stems from the fact the XACML specification does not specify whether order matters in the deny-overrides and permit-overrides combining algorithms.
|
|
Policy Set Editor
When you want to create a set of policies to evaluate at one time, you can create a Policy Set. You can add policies as shown in the figure and Click "Finish" to create the policy set.
...