Table of Contents maxLevel 3
...
This guide demonstrates how to use a downloaded ML model generated using WSO2 ML in plain Java code. This guide uses the <ML_HOME>/samples/ml-model-usage/
sample Java client implementation.
...
- Create a Maven project.
Include the following dependencies in the
pom.xml
file of the project.Code Block language xml <dependency> <groupId>org.wso2.carbon.ml</groupId> <artifactId>org.wso2.carbon.ml.core</artifactId> <version>1.0.1-SNAPSHOT</version> </dependency> <dependency> <groupId>org.wso2.carbon.ml</groupId> <artifactId>org.wso2.carbon.ml.commons</artifactId> <version>1.0.1-SNAPSHOT</version> </dependency>
Runtime dependencies
Code Block language xml <!--Dependencies required for MLModel deserialization--> <dependency> <groupId>org.wso2.orbit.org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.4.1.wso2v1</version> </dependency> <dependency> <groupId>org.wso2.orbit.org.apache.spark</groupId> <artifactId>spark-mllib_2.10</artifactId> <version>1.4.1.wso2v1</version> </dependency> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>2.10.4</version> </dependency> <dependency> <groupId>org.wso2.orbit.org.scalanlp</groupId> <artifactId>breeze_2.10</artifactId> <version>0.11.1.wso2v1</version> </dependency> <dependency> <groupId>org.wso2.orbit.github.fommil.netlib</groupId> <artifactId>core</artifactId> <version>1.1.2.wso2v1</version> </dependency> <!--Dependencies required for predictions--> <dependency> <groupId>org.wso2.orbit.sourceforge.f2j</groupId> <artifactId>arpack_combined</artifactId> <version>0.1.wso2v1</version> </dependency>
The downloaded model contains a serialized
MLModel
object. Deserialize the MLModel as follows.Code Block language java private MLModel deserializeMLModel() throws IOException, ClassNotFoundException, URISyntaxException { // Path to downloaded-ml-model String pathToDownloadedModel = “/tmp/downloaded-ml-model”; FileInputStream fileInputStream = new FileInputStream(pathToDownloadedModel); ObjectInputStream in = new ObjectInputStream(fileInputStream); MLModel mlModel = (MLModel) in.readObject(); logger.info("Algorithm Type : " + mlModel.getAlgorithmClass()); logger.info("Algorithm Name : " + mlModel.getAlgorithmName()); logger.info("Response Variable : " + mlModel.getResponseVariable()); logger.info("Features : " + mlModel.getFeatures()); return mlModel; }
Use
org.wso2.carbon.ml.core.impl.Predictor
to make predictions using the downloaded ML Model. Predictor accepts a list of string arrays as feature values. The feature values should be in the order of the feature index inside the array as shown below.Code Block language java MLModelUsageSample modelUsageSample = new MLModelUsageSample(); // Deserialize MLModel mlModel = modelUsageSample.deserializeMLModel(); // Predict String[] featureValueArray1 = new String[] { "6", "148", "72", "35", "0", "33.6", "0.627", "50" }; String[] featureValueArray2 = new String[] { "0", "101", "80", "40", "0", "26", "0.5", "33" }; ArrayList<String[]> list = new ArrayList<String[]>(); list.add(featureValueArray1); list.add(featureValueArray2); modelUsageSample.predict(list, mlModel); public void predict(List<String[]> featureValueLists, MLModel mlModel) throws MLModelHandlerException { Predictor predictor = new Predictor(0, mlModel, featureValueLists); List<?> predictions = predictor.predict(); logger.info("Predictions : " + predictions); }
The complete project created above can be found in the <ML_HOME>/samples/ml-model-usage
directory. To build this, execute the following command from this directory.
...
To execute this sample, execute the following command from the <ML_HOME>/samples/ml-model-usage
directory.
Code Block |
---|
mvn exec:java |
...