com.atlassian.confluence.content.render.xhtml.migration.exceptions.UnknownMacroMigrationException: The macro 'next_previous_links' is unknown.

Writing a Custom Stream Processor Extension

Siddhi Stream Processor Extension allows events to be collected and expired with altering the event format based on the given input parameters.

To implement a custom stream processor, create a class extending "org.wso2.siddhi.core.query.processor.stream.StreamProcessor" and create an appropriate .siddhiext extension mapping file, compile the class, and build the jar containing the .class and .siddhiext files. Add them to the Siddhi class path. In the case of running them on WSO2 CEP add the jar to <CEP_HOME>/repository/components/lib.

For example, Stream Processor Extension created with namespace "timeseries" and function name "regress" can be referred in the query as follows:

from baseballData#timeseries:regress(2, 10000, 0.95, salary, rbi, walks, strikeouts, errors)
select *
insert into regResults;

 

Sample implementation of a custom stream processor extension can be found below;

/*
 * Copyright (c) 2015, WSO2 Inc. (http://www.wso2.org) All Rights Reserved.
 *
 * WSO2 Inc. licenses this file to you under the Apache License,
 * Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied. See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package org.wso2.siddhi.extension.timeseries;

import org.wso2.siddhi.core.config.ExecutionPlanContext;
import org.wso2.siddhi.core.event.ComplexEvent;
import org.wso2.siddhi.core.event.ComplexEventChunk;
import org.wso2.siddhi.core.event.stream.StreamEvent;
import org.wso2.siddhi.core.event.stream.StreamEventCloner;
import org.wso2.siddhi.core.event.stream.populater.ComplexEventPopulater;
import org.wso2.siddhi.core.exception.ExecutionPlanCreationException;
import org.wso2.siddhi.core.executor.ConstantExpressionExecutor;
import org.wso2.siddhi.core.executor.ExpressionExecutor;
import org.wso2.siddhi.core.query.processor.Processor;
import org.wso2.siddhi.core.query.processor.stream.StreamProcessor;
import org.wso2.siddhi.extension.timeseries.linreg.MultipleLinearRegressionCalculator;
import org.wso2.siddhi.extension.timeseries.linreg.RegressionCalculator;
import org.wso2.siddhi.extension.timeseries.linreg.SimpleLinearRegressionCalculator;
import org.wso2.siddhi.query.api.definition.AbstractDefinition;
import org.wso2.siddhi.query.api.definition.Attribute;

import java.util.ArrayList;
import java.util.List;

/**
 * The methods supported by this function are
 * timeseries:regress(int/long/float/double y, int/long/float/double x1, int/long/float/double x2 ...)
 * and
 * timeseries:regress(int calcInterval, int batchSize, double confidenceInterval, int/long/float/double y, int/long/float/double x1, int/long/float/double x2 ...)
 */

public class LinearRegressionStreamProcessor extends StreamProcessor {

    private int paramCount = 0;                                         // Number of x variables +1
    private int calcInterval = 1;                                       // The frequency of regression calculation
    private int batchSize = 1000000000;                                 // Maximum # of events, used for regression calculation
    private double ci = 0.95;                                           // Confidence Interval
    private final int SIMPLE_LINREG_INPUT_PARAM_COUNT = 2;              // Number of Input parameters in a simple linear regression
    private RegressionCalculator regressionCalculator = null;
    private int paramPosition = 0;


    /**
     * The init method of the LinearRegressionStreamProcessor, this method will be called before other methods
     *
     * @param inputDefinition              the incoming stream definition
     * @param attributeExpressionExecutors the executors of each function parameters
     * @param executionPlanContext         the context of the execution plan
     * @return the additional output attributes introduced by the function
     */
    @Override
    protected List<Attribute> init(AbstractDefinition inputDefinition, ExpressionExecutor[] attributeExpressionExecutors, ExecutionPlanContext executionPlanContext) {
        paramCount = attributeExpressionLength;

        // Capture constant inputs
        if (attributeExpressionExecutors[0] instanceof ConstantExpressionExecutor){
            paramCount = paramCount - 3;
            paramPosition = 3;
            try {
                calcInterval = ((Integer)attributeExpressionExecutors[0].execute(null));
                batchSize = ((Integer)attributeExpressionExecutors[1].execute(null));
            } catch(ClassCastException c) {
                throw new ExecutionPlanCreationException("Calculation interval, batch size and range should be of type int");
            }
            try {
                ci = ((Double)attributeExpressionExecutors[2].execute(null));
            } catch(ClassCastException c) {
                throw new ExecutionPlanCreationException("Confidence interval should be of type double and a value between 0 and 1");
            }
        }

        // Pick the appropriate regression calculator
        if (paramCount > SIMPLE_LINREG_INPUT_PARAM_COUNT) {
            regressionCalculator = new MultipleLinearRegressionCalculator(paramCount, calcInterval, batchSize, ci);
        } else {
            regressionCalculator = new SimpleLinearRegressionCalculator(paramCount, calcInterval, batchSize, ci);
        }


        // Add attributes for standard error and all beta values
        String betaVal;
        ArrayList<Attribute> attributes = new ArrayList<Attribute>(paramCount);
        attributes.add(new Attribute("stderr", Attribute.Type.DOUBLE));

        for (int itr = 0; itr < paramCount; itr++) {
            betaVal = "beta" + itr;
            attributes.add(new Attribute(betaVal, Attribute.Type.DOUBLE));
        }
        return attributes;
    }

    /**
     * The main processing method that will be called upon event arrival
     *
     * @param streamEventChunk      the event chunk that need to be processed
     * @param nextProcessor         the next processor to which the success events need to be passed
     * @param streamEventCloner     helps to clone the incoming event for local storage or modification
     * @param complexEventPopulater helps to populate the events with the resultant attributes
     */
    @Override
    protected void process(ComplexEventChunk<StreamEvent> streamEventChunk, Processor nextProcessor, StreamEventCloner streamEventCloner, ComplexEventPopulater complexEventPopulater) {
        while (streamEventChunk.hasNext()) {
            ComplexEvent complexEvent = streamEventChunk.next();

            Object[] inputData = new Object[attributeExpressionLength-paramPosition];
            for (int i = paramPosition; i < attributeExpressionLength; i++) {
                inputData[i-paramPosition] = attributeExpressionExecutors[i].execute(complexEvent);
            }
            Object[] outputData = regressionCalculator.calculateLinearRegression(inputData);

            // Skip processing if user has specified calculation interval
            if (outputData == null) {
                streamEventChunk.remove();
            } else {
                complexEventPopulater.populateComplexEvent(complexEvent, outputData);
            }
        }
        nextProcessor.process(streamEventChunk);

    }

    /**
     * This will be called only once and this can be used to acquire
     * required resources for the processing element.
     * This will be called after initializing the system and before
     * starting to process the events.
     */
    @Override
    public void start() {
		//Implement start logic to acquire relevant resources
    }

    /**
     * This will be called only once and this can be used to release
     * the acquired resources for processing.
     * This will be called before shutting down the system.
     */
    @Override
    public void stop() {
		//Implement stop logic to release the acquired resources
    }

    /**
     * Used to collect the serializable state of the processing element, that need to be
     * persisted for the reconstructing the element to the same state on a different point of time
     *
     * @return stateful objects of the processing element as an array
     */
    @Override
    public Object[] currentState() {
        return new Object[0];
    }

    /**
     * Used to restore serialized state of the processing element, for reconstructing
     * the element to the same state as if was on a previous point of time.
     *
     * @param state the stateful objects of the element as an array on
     *              the same order provided by currentState().
     */
    @Override
    public void restoreState(Object[] state) {
		//Implement restore state logic
    }

}

 

Sample timeseries.siddhiext extension mapping file for the  custom stream processor extension can be found below;
#
# Copyright (c) 2015, WSO2 Inc. (http://www.wso2.org) All Rights Reserved.
#
# WSO2 Inc. licenses this file to you under the Apache License,
# Version 2.0 (the "License"); you may not use this file except
# in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

regress=org.wso2.siddhi.extension.timeseries.LinearRegressionStreamProcessor
com.atlassian.confluence.content.render.xhtml.migration.exceptions.UnknownMacroMigrationException: The macro 'next_previous_links2' is unknown.