com.atlassian.confluence.content.render.xhtml.migration.exceptions.UnknownMacroMigrationException: The macro 'next_previous_link3' is unknown.

Machine Learner Algorithms

WSO2 ML uses the following algorithms to create  models using the data in a give data set.

AlgorithmDescriptionTypeSupported Publish/Download FormatsRelated SamplesBackward Compatibility when migrated to a ML/DAS version using Apache Spark 1.6.2
LINEAR REGRESSIONLinear Regression algorithm trains a Generalized Linear Model that contains a relationship between independent variables (feature values in data) and the dependent variable (response variable in the data).Numerical prediction
  • Serialized
  • PMML
Not Backward Compatible
RIDGE REGRESSIONRidge Regression algorithm is a variant of Linear Regression where the loss function is the linear least squares function and the regularization is L2.Numerical prediction
  • Serialized
  • PMML
Not Backward Compatible
LASSO REGRESSIONLasso Regression algorithm is a variant of Linear Regression trained with L1 prior as regularizer.Numerical Prediction
  • Serialized
  • PMML
Not Backward Compatible
LOGISTIC REGRESSIONLogistic Regression algorithm is a Generalized Linear Model which predicts the probability of a binary outcome. Logistic function is used to determine the probabilities of the outcomes.Binary Classfication
  • Serialized
  • PMML
Not Backward Compatible
Support Vector MachineSupport Vector Machine is a non-probabilistic binary classifier. It constructs a hyperplane or set of hyperplanes in a high (or infinite) dimensional space which generates a good separation of data points between classes.Binary classification
  • Serialized
  • PMML
Not Backward Compatible
LOGISTIC REGRESSION L-BFGSBinary logistic regression can be generalized into multinomial logistic regression to train and predict multiclass classification problems. For k number of classes, It treats the first class as one class and the rest of the k-1 classes as another class and the class with the largest probability is chosen as the prediction. L-BFGS (Limited memory BFGS) is used as an optimization technique for faster convergence.Multiclass Classification
  • Serialized
Not Backward Compatible
DECISION TREEDecision Tree algorithm creates a  tree-like model that predicts the value of a target variable by learning simple decision rules inferred from the features of the dataset.Multiclass Classification
  • Serialized
Backward Compatible
RANDOM FOREST CLASSIFICATIONRandom Forest Classification algorithm is an ensemble learning method which combines many decision trees in order to reduce the risk of overfitting. Different decision trees are trained with different bootstraps drawn from the dataset (both feature bootstrapping and data point bootstrapping). At prediction, majority vote is taken from the trained decision trees.Multiclass Classification
  • Serialized
Backward Compatible
RANDOM FOREST REGRESSIONRandom Forest Regression algorithm is an ensemble learning method which combines many decision tree regressors in order to reduce the risk of overfitting. Different decision tree regressors are trained with different bootstraps drawn from the dataset (both feature bootstrapping and data point bootstrapping). The value is predicted to be the average of the tree predictions.Numerical Prediction
  • Serialized
Backward Compatible
NAIVE BAYESNaive Bayes algorithm assumes the independence between every pair of features in the dataset. It computes the conditional probability distribution of each feature given the class label, and then it applies Bayes’ theorem to compute the conditional probability distribution of label given a data point and use it for prediction. Negative feature values are not allowed when training a Naive Bayes model.Multiclass Classification
  • Serialized
Not Backward Compatible
K-MEANSK-Means algorithm partitions the data points into a predefined number of clusters (k) in which each data point belongs to the cluster with the nearest mean, serving as a representative (cluster center) of the cluster.Clustering
  • Serialized
  • PMML
Not Backward Compatible
K-MEANS WITH UNLABLED DATAThis is a state-of-art algorithm which performs K-means clustering algorithm on the training data. Data points which are beyond the cluster boundaries (according to a specific percentile value) are detected as anomalies. Labeled data is not required.Anomaly Detection
  • Serialized
Not Backward Compatible
K-MEANS WITH LABLED DATAThis is a state-of-art algorithm which performs K-means clustering algorithm on the training data. Data points which are beyond the cluster boundaries (according to a specific percentile value) are detected as anomalies. This is used when labels (normal and anomalous) are available.Anomaly Detection
  • Serialized
Not Backward Compatible
STACKED AUTOENCODERSStacked Autoencoders algorithms is a multi-layer feed-forward artificial neural network that is trained with stochastic gradient descent using back-propagation. The nodes in the input layer represent the features in the dataset and the nodes in the output layer represent the class labels of the outcomes.Deep Learning
  • Serialized
Backward Compatible
COLLABORATIVE FILTERING (Explicit Data)Collaborative Filtering is used in recommendation systems and aims to fill in the missing entries of a user-item association matrix. This algorithm allows entries in the user-item matrix as explicit preferences(ratings) given by the user to the item. Recommendations are based on these explicitly rates.Recommendation
  • Serialized
Not Backward Compatible
COLLABORATIVE FILTERING (Implicit Feedback Data)Collaborative Filtering is used in recommendation systems and aims to fill in the missing entries of a user-item association matrix. This algorithm allows preferences on the products to be implicit feedbacks such as views, clicks, purchases, likes, shares etc. Recommendations are based on these implicit feedbacks.Recommendation
  • Serialized
Not Backward Compatible

ML 1.1.1 and DAS 3.1.0 use Apache Spark 1.6.2 whereas the previous versions use Spark 1.4.1. Due, when you migrate to ML 1.1.1 or DAS 3.1.0 from a previous version, some of the models will not be backward compatible depending on the algorithm type used. The Backward Compatibility when migrated to a ML/DAS version using Apache Spark 1.6.2 column in the above table specifies which algorithm types do not allow the models to be backward compatible when migrated to a ML/DAS version that uses Apache Spark 1.6.2.

If you want to use a model that is not backward compatible after it is migrated, you need to rebuild it using the relevant analysis. For more information, see Generating Models - Creating a new model within an analysis.